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Equity Mar ket Model 

�
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{St }t�0 price process 
0 interest rate (discount factor t � 1) 
No dividend 

Classical Approach 

Specify dynamics for St , e.g. GBM in Black Scholes case 

dSt = St ˙t dWt 

Compute prices of derivatives by expectation, e.g. 

C0(T, K)= E{(ST − K)
+
} 
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Actively/Liquidly Traded Instr ument 
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Main Assumptions 

At each time t � 0 we observe Ct (T, K) the market price at time 
t of European call options of strike K and maturity T > t. 
Market prices by expectation 

Ct (T , K )= E{(ST − K )
+
|Ft } 

for some measure (not necessarily unique) P 

Empirical Fact 
Many observed option price movements cannot be attributed to 
changes in St 

Fundamental market data: Surface {Ct (T , K )}T ,K instead of St 
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Remarks 

No arbitrage implies 
C0(T , K ) increasing in T 
C0(T , K ) non-increasing and convex in K 
limK %1 C0(T , K ) = 0 
limK &0 C0(T , K ) = S0 

Realistic Set-Up 

We actually observe 

C0(Ti , Kij ) i = 1, · · · , m, j = 1, · · · , ni 

Davis-Hobson & references therein. 
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More Remarks 

Switch to notation ˝ = T − t for time to maturity (Musiela) 
Call surface {C̃ 

t (˝, K )} of prices Ct (T , K ) parameterized by 
˝ � 0 and K � 0. 

C̃t (˝, K ) = E{(St+˝ − K )+|Ft } = EPt {(St+˝ − K )+}. Z 1 
C̃ 

t (˝, K ) = (x − K )+ dµt,t+˝ (dx) 
0 

Crucial Fact (Breeden-Litzenberger) 
For each ˝ > 0, the knowledge of all the prices C̃ 

t (˝, K ) completely 
determines the marginal distribution µt,t+˝ of St+˝ w.r.t. Pt . 
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Black-Scholes Formula 
Dynamics of the underlying asset 

dSt = St ˙dWt , S0 = s0 

Wiener process {Wt }t , ˙ > 0. 

Price of a call option 

C̃t (˝, K ) = St �(d1) − K �(d2) 

with 
− log Mt + ˝˙2/2 − log Mt − ˝˙2/2

d1 = p , d1 = p
˙ ˝ ˙ ˝ 

Mt = K /St moneyness of the option 

� error function 

1 −y�(x) = p 
Z x

e 
2/2 dy , x 2 R. 

2ˇ −1 
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Implied Volatility 

It 

It 

Classical Black-Scholes framework 
On any given day t fix 

maturity T (or time to maturity ˝ ) 
strike K 

price is an increasing function of the parameter ˙ 

C(BS)
˙ ˝ ˜ (˝, K ) one-to-onet 

In general case, given an option price C quoted on the market, its 
implied volatiltiy is the unique number ˙ = �t (˝, K ) for which 

C̃ 
t (˝, K ) = C. 

Used by ALL market participants as a currency for options 

the wrong number to put in the wrong formula to get the right price. 
(Black) 
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Implied Volatility Code-Book 

{C̃ t (˝, K); ˝> 0, K > 0} ˝ {�t (˝, K ); ˝> 0, K > 0} 

Static (t = 0) ”No arbitrage” conditions difficult to formulate 
(B. Dupire, Derman-Kani, P.Carr, ....) 

Dynammic ”No arbitrage conditions” difficult to check in a 
dynamic framework 

(Derman-Kani for tree models) 
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Search for another Option Code-Book 

dSt = St ˙t dWt , S0 = s0 

If t > 0 is fixed, for any ˝1 and ˝2 such that 0 < ˝1 < ˝2, then for any 
convex function ° on [0, 1) we have (Jensen) Z 1 Z 1 

°(x)µt,t+˝1 (dx) � °(x)µt,t+˝2 (dx) 
0 0 

Or 
µt,t+˝1 � µt,t+˝2 

{µt,t+˝ }˝>0 non-decreasing in the balayage order 

(Kellerer) Existence of a Markov martingale {Y˝ }˝�0 with 
marginal distributions {µt,t+˝ }˝>0. 
NB{Y˝ }˝�0 contains more information than the mere marginal 
distributions {µt,t+˝ }˝>0 
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Local Volatility Code-Book 

On Wiener space (in Brownian filtration) 
Martingale Property implies Z ˝ 

Y˝ = Y0 + Ysa(s) dBs 
0 

Markov Property implies 

a(s, !) = at (s, Ys(!)) 

At each time t , I choose surface {at (˝, K )}˝>0,K >0 as an alternative 
code-book for {C̃(˝, K )}˝>0,K >0. 
{at (˝, K )}˝>0,K >0 was introduced in a static framework (i.e. for t = 0) simultaneously 
by Dupire and Derman and Kani – called local volatility surface 
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PDE Code, I 

Assume 
dY˝ = Y˝ at (˝, Y˝ )dB̃ 

˝ , ˝ > 0 

with initial condition 
Y0 = St 

and µt,t+˝ has density gt (˝, x). 

Breeden-Litzenberger argument (specific to the hockey-stick pay-off 
function) Z 1 

C̃ 
t (˝, K ) = (x − K )+gt (˝, x)dx 

0 

Differentiate both sides twice with respect to K 

@2 
C̃ 

t (˝, K ) = gt (˝, K ). (1)
@K 2 
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PDE Code, II 

Tanaka’s formula: Z ˝ Z ˝1 
(Y˝ − K )+ = (Y0 − K )+ + 1[K ,1)(Ys)dYs + �K (Ys) d [Y , Y ]s20 0 

and taking Et - expectations on both sides using the fact that Y is a 
martingale satisfying d [Y , Y ]s = Y 2at (s, Ys)

2ds, we get:s Z ˝1
C̃t (˝, K ) = (St − K )+ + Et {�K (Ys)Y 2at (s, Ys)

2} dss2 0 

= (St − K )+ + 
1 

Z ˝ 

K 2at (s, K )2gt (s, K ) ds.
2 0 

Take derivatives with respect to ˝ on both sides 

@C̃(˝, K ) 1 
= K 2at (˝, K )2gt (˝, K ). 

@˝ 2 
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PDE Code, III 

Equate both expressions of gt (˝, K ) 

2@˝ C̃(˝, K )
at (˝, K )2 = 

K 2@2 C̃(˝, K )KK 

Smooth Call Prices ,! Local Volatilities 
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PDE Code IV 

From local volatility surface {at (˝, K )}˝,K to call option prices 

{C̃ 
t (˝, K )}˝,K solve PDE (Dupire’s PDE) 

@˝ C̃(˝, K ) = 1 K 2 a2(˝, K )@2 C̃(˝, K ), ˝ > 0, K > 02 KK 

C̃(0, K ) = (St − K )+ 

{C̃ 
t (˝, K ); ˝ > 0, K > 0} $ {at (˝, K ); ˝ > 0, K > 0} 

Why would this approach be better? 

NEED ONLY POSITIVITY for no arbitrage 
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Dupire Formula 

If 
dSt = St ˙t dWt 

for some Wiener process {Wt }t and some adapted non-negaitve 
process {˙t }t , then 

at (˝, K )2 = Et {˙t 
2 
+˝ |St+˝ = K}. 
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HJM Prescription 

� �

Proposed by Derman-Kani in 1998, but NEVER developed! 

Compute a0(˝, K ) from market call prices (Initial condition) 
Define a dynamic model by defining the dynamics of the local 
volatility surface 

dat (˝, K ) = t (˝, K )dt + t (˝, K )dWt 
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Consistency 

Question Under what conditions do the Call Prices computed 
from the dynamics of at (˝, K ) come from a model of the form of 
the form 

dSt = St ˙tdB1 
t 

with initial condition S0 = s the underlying instrument? 
Answer 

˙t = at (0, St ) 
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No-Arbitrage Condition 

�
�

� � � � �

Question Under what conditions on the dynamics of at (˝, K ) are 
the call prices (local) martingales? 
Answer 

k k2 @2 @ @2 @ @2 
( + ) · C + ha, Cit = a · C

2 @K 2 @t @K 2 @T @K 2 

Recall classical HJM drift condition Z T d Z TX 
(t , T ) = (t , T ) · (t , s)ds = (j)(t , T ) (j)(t , s)ds. 

t j=1 t 
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Main Result Statement 

� �

�
�

The dynamic model of the local volatility surface given by the system of 
equations 

dãt (˝, K ) = ˜t (˝, K )dt + t̃ (˝, K )dWt , t � 0, (2) 

is consistent with a spot price model of the form 

dSt = St ˙t dBt 

for some Wiener process {Bt }t , and does not allow for arbitrage if and only 
if a.s. for all t > 0: 

•ãt (0, St ) = ˙t (3) 
2•@˝ ãt (˝, K )@KK C̃t (˝, K ) = (4)� 

k t (˝, K )k2 � 
2 d 2 2ãt (˝, K )˜t (˝, K ) + @KK C̃t (˝, K ) + hã·(˝, K ) , @KK C̃ ·(˝, K )it2 dt 

h · · it quadratic covariation of two semi-martingales. 
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Practical Monte Carlo Implementation 

�

�

�

�

Start from a model for t (˝, K ) (say a stochastic differential 
equation); 
Get S0 and C0(˝, K ) from the market and compute @2 

KK C0, a0 and 
0 from its model; 

Loop: for t = 0, �t , 2�t , · · · 

1 

2 

Get t (˝, K ) from the drift condition; 
Use Euler to get 

at+�t (˝, K ) from the dynamics of the local volatility; 
St+�t from St Dynamics; 

t+�t from its own model; 
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Markovian Spot Models ( � 0) 

d 
˜t (˝, K ) = ãt (˝, K ).

dt 
Drift condition reads 

@˝ ãt (˝, K ) = ˜t (˝, K ) 

Hence 
d 

@˝ ãt (˝, K ) = ãt (˝, K )
dt 

which shows that for fixed K , ãt (˝, K ) is the solution of a transport equation 
whose solution is given by: 

ãt (˝, K ) = ã0(˝ + t , K ) 

and the consistency condition forces the special form 

˙t = a0(t , St ) 

of the spot volatility. Hence we proved: 

The local volatility is a process of bounded variation for each 
˝ and K fixed if and only if it is the deterministic shift of a 
constant shape and the underlying spot is a Markov process. 
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A First Parametr ic Family 
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2 P2 /(2˝˙i 
2)−˝˙i 

2/8 
=0 pi ˙ie−x 

i a2(˝, x, �) = 
i /8 P2 

=0(pi /˙i )e−x2/(2˝˙i 
2)−˝˙2 

i 

for 
�=(˙0,˙1,˙2, p1, p2) 

Mixture of Black-Scholes Call surfaces for 3 different volatilities 
Singularity when ˝ & 0 
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Numerical Evidence of Singularity 

14th CAP 2007 Local Volatility Dynamic Models 



A Second Parametr ic Family 
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As in Brigo-Mercurio 

Still a mixture of Black-Scholes Call surfaces for 3 different 
volatilities 
Each volatility is time dependent t ,! ˙i (t) 
˙0(0)= ˙1(0)= ˙2(0) 

−d2(˙)/2 −d2(˙1)/2 −d2(˙2)/2
(1 − (p1 + p2)˝) ˙e + p1˝˙1e + p2˝˙2e 

a
2
(�, ˝, x)= 

(1 − (p1 + p2)˝) 1 e−d2(˙)/2 + p1˝ 1 e−d2(˙1)/2 + p2˝ 1 e−d2(˙2)/2 
˙˙1 ˙2 

where �� 1 s − x + r + 2 ˙2 ˝ 
d(˙)= p

˙˝ 

�=(p1, p2, ˙, ˙1,˙2, s, r) 

14th CAP 2007 Local Volatility Dynamic Models 



Fit to Real Data 
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Stochastic Volatility Models 

dSt = ˙tStdWt 

with 
d˙2 = b(˙t 

2)dt + a(˙t 
2)dW̃ tt 

where 
dhW , W̃ it = ˆdt . 

Usually 
b(˙2) = −�(˙2 − ˙2) 

Special cases: 
p

a(˙2) = , (Hull-White) a(˙2) = ˙2 (Heston) 
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Local Volatility of SV Models 

ˆ ˙ 
S ˜ e−E ˙T 

2 d 
2
1
2 p ˙̄T2@˝ C 

a2(˝, K ) = = ˙2 1 − ˆ2 · ˆ ˙0K 2@2 d2 
1KK C E S e− 2 

˙̄T q R Twhere ˜ = ˙T , and ¯ = 1 ˙̃2ds˙T ˙0 
˙T T 0 s � � 

ˆ˙0 1 2 2 2S = s0 exp (˜̇˝ − 1) − ˙0 ˆ ˙̄ ˝ ˝ 
˙̂ 2 

and 
log(s0) − log(K ) + ˆ˙0 (˜̇˝ − 1) + ( 2

1 − ˆ2)˙0
2˙̄ ˝ 

2 ˝ 
d1 = p ˙̂ p

1 − ˆ2˙0˙̄˝ ˝ 

14th CAP 2007 Local Volatility Dynamic Models 



First Example: ˆ 0.5 =

0
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Second Example: ˆ −0.1 =

0
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Third Example: ˆ −0.75 =

0
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Comparing SV Models 
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